A Spatial EA Framework for Parallelizing Machine Learning Methods

نویسندگان

  • Uday Kamath
  • Johan Kaers
  • Amarda Shehu
  • Kenneth A. De Jong
چکیده

The scalability of machine learning (ML) algorithms has become increasingly important due to the ever increasing size of datasets and increasing complexity of the models induced. Standard approaches for dealing with this issue generally involve developing parallel and distributed versions of the ML algorithms and/or reducing the dataset sizes via sampling techniques. In this paper we describe an alternative approach that combines features of spatially-structured evolutionary algorithms (SSEAs) with the well-known machine learning techniques of ensemble learning and boosting. The result is a powerful and robust framework for parallelizing ML methods in a way that does not require changes to the ML methods. We first describe the framework and illustrate its behavior on a simple synthetic problem, and then evaluate its scalability and robustness using several different ML methods on a set of benchmark problems from the UC Irvine ML database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix

The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...

متن کامل

Cs229 Project: Tls, Using Learning to Speculate

We apply machine learning to thread level speculation, a future hardware framework for parallelizing sequential programs. By using machine learning to determine the parallel regions, the overall performance is nearly as good as the best heuristics for each application.

متن کامل

Distributed Machine Learning: Foundations, Trends, and Practices

In recent years, artificial intelligence has achieved great success in many important applications. Both novel machine learning algorithms (e.g., deep neural networks), and their distributed implementations play very critical roles in the success. In this tutorial, we will first review popular machine learning algorithms and the optimization techniques they use. Second, we will introduce widely...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Widened KRIMP: Better Performance through Diverse Parallelism

We demonstrate that the previously introduced Widening framework is applicable to state-of-the-art Machine Learning algorithms. Using Krimp, an itemset mining algorithm, we show that parallelizing the search finds better solutions in nearly the same time as the original, sequential/greedy algorithm. We also introduce Reverse Standard Candidate Order (RSCO) as a candidate ordering heuristic for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012